

When printed this becomes an uncontrolled document. Please access the Module Directory for the most up to date version by clicking on the following link: <u>Module directory</u>

G5*Module Code	ENG5B2
Module Title	Wind and Hydro Energy Engineering
Level	5
Credit value	20
Faculty	Engineering
HECoS Code	100175
Cost Code	GAME

Programmes in which module to be offered

Programme title	Is the module core or option	
	for this programme	
BEng / MEng Renewable and Sustainable Engineering	Core	
BEng Low Carbon Energy, Efficiency, and Sustainability	Core	

Pre-requisites

None

Breakdown of module hours

Learning and teaching hours	20hrs
Placement tutor support	0 hrs
Supervised learning e.g., practical classes, workshops	16 hrs
Project supervision (level 6 projects and dissertation modules only)	0 hrs
Total active learning and teaching hours	36 hrs
Placement / work-based learning	0 hrs
Guided independent study	164 hrs
Module duration (total hours)	200 hrs

For office use only	
Initial approval date	22/08/2022
With effect from date	September 2022
Date and details of	
revision	
Version number	1

- To equip the student with the capability to master complex specialised skills around renewable energy with an overarching background of planning various renewable energy schemes and the prediction of energy output.
- The enable student to act on their own investigations and initiative together with critical decision making to supply optimum solutions to a specific energy grid demand.
- To challenge the student to develop critical evaluation and selection skills from wind and hydro energy supply profiles matched with storage through self-created methodologies, synthesising ideas and information to generate an energy secure solution.

Module Learning Outcomes - at the end of this module, students will be able to:

1	Demonstrate an engineering knowledge of the theory, practice, and functionality of wind energy production.	
2	Demonstrate an engineering knowledge of the theory, practice, and functionality of hydro energy systems	
3	Analyse ways in which wind and hydro energy sources can be assessed to predict output in a variety of situations.	
4	Apply knowledge and design skills to select wind energy and hydro energy solutions for real world scenarios using self-created evaluation.	
5	Evaluate the environmental consequences (both positive and negative) of wind energy and hydro energy sources using life cycle analysis.	

Assessment

Indicative Assessment Tasks:

100% coursework: The student will work in group (2-3 students per group) to design wind and hydro energy schemes using specialist software and interpret their energy profile. The student will then be tasked with finding the most efficient solution to supply energy using a self-created methodology with a wide range of considerations. Indicative word count: 3000 words per student plus software screenshots and/ or download self-generated reports.

-	Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)
	1	1,2,3,4,5	Coursework	100

Derogations

A derogation from regulations has been approved for this module which means that whilst the pass mark is 40%, each element of assessment requires a minimum mark of 30% for the module to be passed overall.

Learning and Teaching Strategies

The module is taught through a combination of lectures and workshops. An active and inclusive approach is used to engage learners in the topics and will involve individual, group work and flipped *learning* experiences aligned to the university's Active Learning Framework (ALF). The approach offers students a flexible and adaptive learning experience that can accommodate a range of options that includes both on campus learning and remote learning where appropriate.

The Moodle VLE and other on-line materials and resources will be available to support learning. ALF offers a balance between the classroom elements and digitally enabled activity incorporating flexible and accessible resources and flexible and accessible feedback to support learning.

Indicative Syllabus Outline

Wind Energy:

- Wind energy components.
- Wind statistical analyses.
- Principles of wind energy.
- Theoretical power production.
- · Aerodynamics, Betz limit.
- Turbine Types.
- Social, economic, legal, and environmental constraints.
- Wind energy reliability, sustainability, and maintainability of energy production process.
- RETScreen (or similar) software, wind farm design.
- Prediction of potential energy.
- Wind energy project design and evaluation.

Hydro energy

- Hydroelectric power. Introduction, components, principles of hydro energy, types of hydro devices,
- River Hydro: High verses low head, prediction of potential energy, costs, benefits. Energy production potential. Design of schemes.
- Wave energy: Introduction, components, principles and nature of wave energy, types
 of wave energy devices, prediction of energy production. Theoretical and practical
 design considerations. Design of schemes.
- Tidal power: Principles and nature of tidal energy, components, types of tidal power devices, prediction of energy production. Design of schemes.

Indicative Bibliography:

Please note the essential reads and other indicative reading are subject to annual review and update.

Essential Reads

E. Hossain, and S. Petrovic, *Renewable Energy Crash Course: A Concise Introduction*. Springer, 2021.

Other indicative reading

Lecture notes

Online tools

Employability skills – the Glyndwr Graduate

Each module and programme are designed to cover core Glyndŵr Graduate Attributes with the aim that each Graduate will leave Glyndŵr having achieved key employability skills as part of their study. The following attributes will be covered within this module either through the content or as part of the assessment. The programme is designed to cover all attributes and each module may cover different areas.

Core Attributes

Engaged
Enterprising
Creative
Ethical

Key Attitudes

Commitment Curiosity Resilience Confidence Adaptability

Practical Skillsets

Digital Fluency
Organisation
Leadership and Team working
Critical Thinking
Emotional Intelligence
Communication